Science leads the way...

 

                                                            We follow...

 
 
   

Scientific Researches On:

Ellagic Acid (Raspberry/Pomegranate Extract)

USA National Center for Biotechnology Information

 

Related Articles, Links

Click here to read
Mechanism-based in vitro screening of potential cancer chemopreventive agents.

Gerhäuser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, Liu GY, Sitthimonchai S, Frank N.

Division of Toxicology and Cancer Risk Factors, C010-2 Chemoprevention, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. c.gerhauser@dkfz.de

Identification and use of effective cancer chemopreventive agents have become an important issue in public health-related research. For identification of potential cancer chemopreventive constituents we have set up a battery of cell- and enzyme-based in vitro marker systems relevant for prevention of carcinogenesis in vivo. These systems include modulation of drug metabolism (inhibition of Cyp1A activity, induction of NAD(P)H:quinone reductase (QR) activity in Hepa1c1c7 murine hepatoma cell culture), determination of radical scavenging (DPPH scavenging) and antioxidant effects (scavenging of superoxide anion-, hydroxyl- and peroxyl-radicals), anti-inflammatory mechanisms (inhibition of lipopolysaccharide (LPS)-mediated nitric oxide (NO) generation by inducible NO synthase (iNOS) in Raw 264.7 murine macrophages, cyclooxygenase-1 (Cox-1) inhibition), and anti-tumor promoting activities (inhibition of phorbol ester-induced ornithine decarboxylase (ODC) activity in 308 murine keratinocytes). We have tested a series of known chemopreventive substances belonging to several structural classes as reference compounds for the identification of novel chemopreventive agents or mechanisms. These include organosulfur compounds (phenethylisothiocyanate (PEITC), diallylsulfide, diallyldisulfide), terpenes (limonene, perillyl alcohol, oleanolic acid, 18-beta-glycyrrhetinic acid), short-chain fatty acids (sodium butyrate), indoles (indole-3-carbinol), isoflavonoids (quercetin, silymarin, genistein), catechins ((-)-epigallocatechin gallate (EGCG)), simple phenols (ellagic acid, resveratrol, piceatannol, curcumin), pharmaceutical agents (piroxicam, acetylsalicylic acid, tamoxifen), and vitamins/derivatives (ascorbic acid, Trolox). We confirmed known chemopreventive mechanisms of these compounds. Additionally, we could demonstrate the usefulness of our approach by identification of hitherto unknown mechanisms of selected agents. As an example, we detected anti-inflammatory properties of PEITC, based on NF-kappaB-mediated inhibition of NO production. Further, PEITC inhibited phorbol ester-induced superoxide anion radical production in granulocytes, and ODC induction in the 308 cell line. These mechanisms might contribute to the chemopreventive potential of PEITC. Copyright 2002 Elsevier Science B.V.

Publication Types:


PMID: 12628514 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Antioxidant regulation of protein kinase C in cancer prevention.

Gopalakrishna R, Gundimeda U.

Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles 90089, USA. rgopalak@usc.edu

Besides scavenging free radicals, antioxidants inhibit signaling enzymes such as protein kinase C (PKC) that play a crucial role in tumor promotion. By having different oxidation susceptible regions, PKC can respond to both oxidant tumor promoters and cancer-preventive antioxidants to elicit opposite cellular responses. Oxidant tumor promoters activate PKC by reacting with zinc-thiolates present within the regulatory domain. In contrast, the oxidized forms of some cancer-preventive agents, such as polyphenolics (ellagic acid, 4-hydroxytamoxifen and curcumin) and selenocompounds, can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. This brings an efficient counteractive mechanism to block the signal transduction induced by tumor promoters at the first step itself. Because prostate cancer prevention clinical trials in large human population are under way, we have focused more on understanding the cancer-preventive mechanism of selenium. Methylselenol, the postulated cancer-preventive metabolite, has no direct effect on PKC activity. However, methylseleninic acid, locally generated by the reaction of membrane methylselenol with PKC-bound tumor-promoting fatty acid hydroperoxides, selectively inactivates PKC. This mechanism clarifies how the volatile methylselenol that is present in a low concentration induces the inactivation of PKC selectively in the promoting precancer cells. Selenoprotein thioredoxin reductase reverses selenium-induced inactivation of PKC, suggesting that selenoproteins may serve as a safeguard against the toxicity induced by selenometabolites. Moreover, this also explains how a resistance to selenium develops in advanced malignant cells. The redox-mediated inactivation of PKC may, at least in part, be responsible for the antioxidant-induced inhibition of tumor promotion and cell growth, as well as for the induction of cell death.

Publication Types:


PMID: 12468631 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit.

Saleem A, Husheem M, Härkönen P, Pihlaja K.

Department of Chemistry, University of Turku, Kiinamyllynkatu 10, FIN-20014 Turku, Finland. amsale@utu.fi

A 70% methanol extract of Terminalia chebula fruit, was studied for its effects on growth in several malignant cell lines including a human (MCF-7) and mouse (S115) breast cancer cell line, a human osteosarcoma cell line (HOS-1), a human prostate cancer cell line (PC-3) and a non-tumorigenic, immortalized human prostate cell line (PNT1A) using assays for proliferation ([(3)H]-thymidine incorporation and coulter counting), cell viability (ATP determination) and cell death (flow cytometry and Hoechst DNA staining). In all cell lines studied, the extract decreased cell viability, inhibited cell proliferation, and induced cell death in a dose dependent manner. Flow cytometry and other analyses showed that some apoptosis was induced by the extract at lower concentrations, but at higher concentrations, necrosis was the major mechanism of cell death. ATP assay guided chromatographic fractionation of the extract yielded ellagic acid, 2,4-chebulyl-beta-D-glucopyranose (a new natural product), and chebulinic acid which were tested by ATP assay on HOS-1 cell line in comparison to three known antigrowth phenolics of Terminalia, gallic acid, ethyl gallate, luteolin, and tannic acid. Chebulinic acid (IC(50) = 53.2 microM +/- 0.16) > tannic acid (IC(50) = 59.0 microg/ml +/- 0.19) > and ellagic acid (IC(50) = 78.5 microM +/- 0.24), were the most growth inhibitory phenolics of T. chebula fruit in our study.

Publication Types:


PMID: 12127233 [PubMed - indexed for MEDLINE]


 

Related Articles, Links


Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants.

Narayanan BA, Narayanan NK, Stoner GD, Bullock BP.

Microarray Systems Laboratory, American Health Foundation, Valhalla, NY 10595, USA. bhagavat@mindspring.com

Dietary phenolic compounds are known to elicite vital cellular responses such as cell cycle arrest, apoptosis and differentiation by activating a cascade of molecular events. As there is an increasing interest to improve the efficacy of these compounds for use as potential chemopreventive agents, we wanted to understand the impact of phenolic compounds on target genes in prostate cancer. In this study we used human cDNA microarrays with 2400 clones consisting of 17 prosite motifs to characterize alterations in gene expression pattern in response to the phenolic antioxidants ellagic acid (EA) and resveratrol (RE). Over a 48-hr exposure of androgen - sensitive LNCaP cells to EA and RE, a total of 593 and 555 genes respectively, showed more than a two fold difference in expression. A distinct set of genes in both EA-and RE-treated cells may represent the signature profile of phenolic antioxidant-induced gene expression in LNCaP cells. Although extensive similarity was found between effects of EA - and RE - responsive genes in prostate cancer cells, out of 246 genes with overlapping responses, 25 genes showed an opposite effect. Quantitative RT-PCR was used to verify and validate the differential expression of selected genes identified from cDNA microarrays. In-depth analysis of the data from this study provided insight into the alterations in the p53 - responsive genes, p300, Apaf-1, NF-kBp50 and p65 and PPAR families of genes, suggesting the activation of multiple signaling pathways that leads to growth inhibition of LNCaP cells. This is a first study to look for changes in a large number of human genes in response to dietary compounds.

Publication Types:


PMID: 12002526 [PubMed - indexed for MEDLINE]


 

Related Articles, Links


Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2'-deoxyguanosine levels in the Fischer 344 rat.

Harris GK, Gupta A, Nines RG, Kresty LA, Habib SG, Frankel WL, LaPerle K, Gallaher DD, Schwartz SJ, Stoner GD.

Department of Food Sciences and Technology, College of Food, Agriculture, and Environmental Sciences, Ohio State University, Columbus, OH 43210, USA.

This study examined the effects of lyophilized black raspberries (BRB) on azoxymethane (AOM)-induced aberrant crypt foci (ACF), colon tumors, and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in male Fischer 344 rats. AOM was injected (15 mg/kg body wt i.p.) once per week for 2 wk. At 24 h after the final injection, AOM-treated rats began consuming diets containing 0%, 2.5%, 5%, or 10% (wt/wt) BRB. Vehicle controls received 5% BRB or diet only. Rats were sacrificed after 9 and 33 wk of BRB feeding for ACF enumeration and tumor analysis. ACF multiplicity decreased 36%, 24%, and 21% (P < 0.01 for all groups) in the 2.5%, 5%, and 10% BRB groups, respectively, relative to the AOM-only group. Total tumor multiplicity declined 42%, 45%, and 71% (P < 0.05 for all groups). Although not significant, a decrease in tumor burden (28%, 42%, and 75%) was observed in all BRB groups. Adenocarcinoma multiplicity decreased 28%, 35%, and 80% (P < 0.01) in the same treatment groups. Urinary 8-OHdG levels were reduced by 73%, 81%, and 83% (P < 0.01 for all groups). These results indicate that BRB inhibit several measures of AOM-induced colon carcinogenesis and modulate an important marker of oxidative stress in the Fischer 344 rat.

Publication Types:


PMID: 11962247 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Chemoprevention of heterocyclic amine-induced mammary carcinogenesis in rats.

Hirose M, Nishikawa A, Shibutani M, Imai T, Shirai T.

Division of Pathology, National Institute of Health Sciences, Tokyo, Japan. m-hirose@nihs.go.jp

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is one of the most prevalent carcinogenic heterocyclic amines in the environment, targeting the colon, prostate, pancreas, and mammary gland in rodents. Chemopreventive effects of synthetic and naturally occurring compounds on PhIP-induced rat mammary carcinogenesis were investigated in a series of experiments. In a PhIP feeding model, groups of 20-21 female F344 rats each, were treated with 0.02% PhIP alone or PhIP plus 0.5% 1-O-hexyl-2,3,5-trimethylhydroquinone (HTHQ), 1% green tea catechins, 1% alpha-tocopherol, 0.1% ellagic acid, or 1% chlorophyllin, each in the diet, or 0.1% caffeine in drinking water for 52 weeks. To assess the mechanism of HTHQ and caffeine inhibition of PhIP-induced carcinogenesis, effects of these compound on the in vitro metabolic activation of PhIP were examined in the presence of S9 mix. In the next series of experiments, the PhIP intragastric dose model was applied to allow separate investigation of the effects of chemicals during the initiation and postinitiation periods. In these experiments, female Sprague-Dawley rats were given eight intragastric doses of 100 mg/kg body weight during the first 4-8 weeks for initiation. Either during initiation or after initiation, or only after initiation, animals were treated with either corn or perilla oil at doses of 5 and 20%, conjugated fatty acid derived from safflower oil (CFA-S) or perilla oil (CFA-P) at a dose of 1%, arctiin at doses of 0.02 and 0.2% in the diet, or sodium nitrite (NaNO(2)) at a dose of 0.2% in drinking water. In the PhIP feeding model, administration of PhIP alone for 52 weeks induced adenocarcinomas in 40% of rats, but the incidence was remarkably reduced to 5% by the simultaneous treatment with 0.5% HTHQ, a strong lipophilic phenolic antioxidant, or to 10% by 0.1% caffeine. Administration of 1% chlorophyllin exerted similar, albeit weaker, effects. alpha-Tocopherol at a dose of 0.5% only reduced the multiplicity of carcinomas, and 1% green tea catechins only the mean size of mammary tumors. In a metabolic activation study of PhIP, HTHQ and caffeine clearly inhibited the formation of metabolites. In the PhIP gastric dose model, among the naturally occurring compounds examined, a plant lignan arctiin, perilla oil, which contains a large amount of n-6 alpha-linolenic acid, and CFA-S or CFA-P inhibited mammary tumor development, particularly in the postinitiation period, although a clear dose response was not observed. Treatment with 0.2% NaNO(2) in the initiation period was found to lower the volume of mammary tumors. The present results indicate that a number of compounds may be candidate chemopreventive agents against PhIP-induced mammary carcinogenesis, acting through different mechanisms and depending on the stage of carcinogenesis. Copyright 2002 Wiley-Liss, Inc.

Publication Types:


PMID: 11921198 [PubMed - indexed for MEDLINE]


 

Related Articles, Links


Strong antioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay.

Festa F, Aglitti T, Duranti G, Ricordy R, Perticone P, Cozzi R.

Dipartimento di Biologia, Università degli Studi Roma TRE, Italy.

Oxidative stress due to oxygen and various radical species is associated with the induction of DNA single- and double-strand breaks and is considered to be a first step in several human degenerative diseases, cancer and ageing. Naturally occurring antioxidants are being extensively analysed for their ability to protect DNA against such injury. We studied three naturally occuring compounds, Ascorbic Acid, Melatonin and Ellagic acid, for their ability to modulate DNA damage produced by two strong radical oxygen inducers (H2O2 and Bleomycin) in cultured CHO cells. The alkaline Comet assay was used to measure DNA damage and a cytofluorimetric analysis was performed to reveal the intracellular oxidative species. The data showed a marked reduction of H2O2- and Bleomycin-induced DNA damage exerted by Ellagic Acid. On the contrary Ascorbic acid and Melatonin appeared to induce a slight increase in DNA damage per se. In combined treatments, they caused a slight reduction of H2O2-induced damage, but they did not efficiently modulate the Bleomycin-induced one. The Dichlorofluorescein diacetate (DCFH-DA) cytofluorimetric test confirmed the strong scavenging action exerted by Ellagic Acid.

Publication Types:


PMID: 11911267 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Ellagic [correction of ellagica] acid inhibits arylamine N-acetyltransferase activity and DNA adduct formation in human bladder tumor cell lines (T24 and TSGH 8301).

Lin SS, Hung CF, Tyan YS, Yang CC, Hsia TC, Yang MD, Chung JG.

Department of Radiological Technology, Chungtai Institute of Health Sciences and Technology, Taichung, Taiwan, Republic of China.

The fact that vitamin C (ascorbic acid) exhibits a protective effect in certain types of cancer is well documented. Our previous studies demonstrated that human bladder tumor cell line (T24) has N-acetyltransferase (NAT) activity in cytosols and intact cells. The present studies examined the inhibition of arylamine NAT activity and carcinogen (2-aminofluorene)-DNA adduct formation by ellagic acid (EA) in human bladder tumor cell lines (T24 and TSGH 8301). Two assay systems were performed, one with cellular cytosols (9,000 g supernatant), the other with intact bladder tumor cell suspensions. NAT activity and 2-aminofluorene-DNA adduct formation in T24 and TSGH 8301 cells was inhibited by EA in a dose-dependent manner in both systems, i.e.. the greater the concentration of EA in the reaction the greater the inhibition of NAT activity (dose- and time-course dependent effects). The data also indicated that EA decreased the apparent Km and Vmax of NAT enzymes from T24 and TSGH 8301 cells in cytosols. NAT activity and 2-aminofluorene-DNA adducts in T24 is higher than in TSGH 8301. This report is the first to demonstrate that EA affects human bladder tumor cell NAT activity.

Publication Types:


PMID: 11828989 [PubMed - indexed for MEDLINE]


 

Related Articles, Links


Ellagic acid inhibits nucleoside diphosphate kinase-B activity.

Malmquist NA, Anzinger JJ, Hirzel D, Buxton IL.

Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.

Publication Types:


PMID: 11793995 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Antiproliferative constituents in the plant 8. Seeds of Rhynchosia volubilis.

Kinjo J, Nagao S, Tanaka T, Nonaka GI, Okabe H.

Faculty of Pharmaceutical Sciences, Fukuoka University, Japan. kinjojun@fukuoka-u.ac.jp

The MeOH extract of the seeds of Rhynchosia volubilis (Leguminosae) showed antiproliferative activity against human gastric adenocarcinoma [MK-1, 50% growth inhibition (GI50): 25 microg/ml], human uterus carcinoma (HeLa, GI50: 30 microg/ml), and murine melanoma (B16F10, GI50: 8 microg/ml) cells. Bioactivity-guided fractionation resulted in the isolation of gallic acid methylester (1), gallic acid (2), 7-O-galloylcatechin (3), 1,6-di-O-galloylglucose (4), 1-O-galloylglucose (5), and trigalloylgallic acid (6), and their antiproliferative activity was estimated. All showed much stronger inhibition against B16F10 cell growth than against HeLa and MK-1 cell growth. Compound 2 and its tetramer (6) with a free carboxyl group showed higher activity than those which did not have a free carboxyl group. In relation to the gallic acid tetramer (6), two gallic acid dimers (ellagic acid and dehydrodigallic acid) and trimers (tergallic acid dilactone and flavogallonic acid dilactone) were tested for their activity, and compared with those of the isolates.

Publication Types:


PMID: 11767121 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Chemoprevention of esophageal tumorigenesis by dietary administration of lyophilized black raspberries.

Kresty LA, Morse MA, Morgan C, Carlton PS, Lu J, Gupta A, Blackwood M, Stoner GD.

Division of Environmental Health Sciences, School of Public Health, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.

Fruit and vegetable consumption has consistently been associated with decreased risk of a number of aerodigestive tract cancers, including esophageal cancer. We have taken a "food-based" chemopreventive approach to evaluate the inhibitory potential of lyophilized black raspberries (LBRs) against N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in the F344 rat, during initiation and postinitiation phases of carcinogenesis. Anti-initiation studies included a 30-week tumorigenicity bioassay, quantification of DNA adducts, and NMBA metabolism study. Feeding 5 and 10% LBRs, for 2 weeks prior to NMBA treatment (0.25 mg/kg, weekly for 15 weeks) and throughout a 30-week bioassay, significantly reduced tumor multiplicity (39 and 49%, respectively). In a short-term bioassay, 5 and 10% LBRs inhibited formation of the promutagenic adduct O(6)-methylguanine (O(6)-meGua) by 73 and 80%, respectively, after a single dose of NMBA at 0.25 mg/kg. Feeding 5% LBRs also significantly inhibited adduct formation (64%) after NMBA administration at 0.50 mg/kg. The postinitiation inhibitory potential of berries was evaluated in a second bioassay with sacrifices at 15, 25, and 35 weeks. Administration of LBRs began after NMBA treatment (0.25 mg/kg, three times per week for 5 weeks). LBRs inhibited tumor progression as evidenced by significant reductions in the formation of preneoplastic esophageal lesions, decreased tumor incidence and multiplicity, and reduced cellular proliferation. At 25 weeks, both 5 and 10% LBRs significantly reduced tumor incidence (54 and 46%, respectively), tumor multiplicity (62 and 43%, respectively), proliferation rates, and preneoplastic lesion development. Yet, at 35 weeks, only 5% LBRs significantly reduced tumor incidence and multiplicity, proliferation indices and preneoplastic lesion formation. In conclusion, dietary administration of LBRs inhibited events associated with both the initiation and promotion/progression stages of carcinogenesis, which is promising considering the limited number of chemopreventives with this potential.

Publication Types:


PMID: 11507061 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Effect of chemopreventive agents on DNA adduction induced by the potent mammary carcinogen dibenzo[a,l]pyrene in the human breast cells MCF-7.

Smith WA, Freeman JW, Gupta RC.

Graduate Center for Toxicology, 354 Health Sciences Research Building, University of Kentucky Medical Center, Lexington, KY 40536-0305, USA.

Over 1500 structurally diverse chemicals have been identified which have potential cancer chemopreventive properties. The efficacy and mechanisms of this growing list of chemoprotective agents may be studied using short-term bioassays that employ relevant end-points of the carcinogenic process. In this study, we have examined the effects of eight potential chemopreventive agents, N-acetylcysteine (NAC), benzylisocyanate (BIC), chlorophyllin, curcumin, 1,2-dithiole-3-thione (D3T), ellagic acid, genistein, and oltipraz, on DNA adduction of the potent mammary carcinogen dibenzo[a,l]pyrene (DBP) using the human breast cell line MCF-7. Bioactivation of DBP by MCF-7 cells resulted in the formation of one predominant (55%) dA-derived and several other dA- or dG-derived DNA adducts. Three test agents, oltipraz, D3T, and chlorophyllin substantially (>65%) inhibited DBP-DNA adduction at the highest dose tested (30 microM). These agents also significantly inhibited DBP adduct levels at a lower dose of 15 microM, while oltipraz was effective even at the lowest dose of 5 microM. Two other agents, genistein and ellagic acid were moderate (45%) DBP-DNA adduct inhibitors at the highest dose tested, while NAC, curcumin, and BIC were ineffective. These studies indicate that the MCF-7 cell line is an applicable model to study the efficacy of cancer chemopreventive agents in a human setting. Moreover, this model may also provide information regarding the effect of the test agents on carcinogen bioactivation and detoxification enzymes.

Publication Types:


PMID: 11506803 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Quinone isomers of the WS-5995 antibiotics: synthetic antitumor agents that inhibit macromolecule synthesis, block nucleoside transport, induce DNA fragmentation, and decrease the growth and viability of L1210 leukemic cells more effectively than ellagic acid and genistein in vitro.

Perchellet EM, Sperfslage BJ, Qabaja G, Jones GB, Perchellet JP.

Anti-Cancer Drug Laboratory, Kansas State University, Division of Biology, Ackert Hall, Manhattan, KS 66506-4901, USA.

Antibiotic WS-5995A (code name J4) and two of its synthetic analogs, o-quinone J1 and model p-quinone J7, which show some structural similarity with both ellagic acid (EA) and genistein (GEN), were compared for their antileukemic activity in L1210 cells in vitro. Overall, J4 is more cytostatic and cytotoxic than J1 and J7, suggesting that methyl and methoxy substitutions, a p-quinone moiety, and a hydrogen bonding phenolic group may enhance the antitumor potential of these naphthoquinone lactones, which are all more potent than EA and GEN. For instance, the lead compound J4 inhibits tumor cell proliferation and viability at day 4 (IC(50): 0.24--0.65 microM) more effectively than EA (IC(50): 5--6 microM) and GEN (IC(50): 7 microM). Since J4 does not increase but rather decreases the mitotic index of L1210 cells at 24 h, it is not an antitubulin drug but might arrest early stages of cell cycle progression like EA and GEN. A 1.5- to 3-h pretreatment with J4 is sufficient to inhibit the rates of DNA, RNA and protein syntheses (IC(50): 2.0--2.5 microM) determined over 30- to 60-min periods of pulse-labeling in L1210 cells in vitro, whereas EA (IC(50): 20-130 microM) and GEN (IC(50): 40--115 microM) are less effective against macromolecule synthesis. In contrast to 156 microM EA, which is inactive, a 15-min pretreatment with 10--25 microM J4 has the advantage of also inhibiting the cellular transport of both purine and pyrimidine nucleosides over a 30 s period in vitro, an effect which can be mimicked by 156 microM GEN. Hence, the WS-5995 analogs and GEN may prevent the incorporation of [(3)H]adenosine and [(3)H]thymidine into DNA because they rapidly block the uptake of these nucleosides by the tumor cells. After 24 h, the concentration-dependent induction of DNA cleavage by J4 peaks at 10 microM and declines at 25 microM, whereas EA and GEN are ineffective at 10 microM but maximally stimulate DNA cleavage at 62.5 microM. Like EA and GEN, the mechanism by which J4 induces DNA fragmentation is inhibited by actinomycin D, cycloheximide, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, N-tosyl-L-phenylalanine chloromethyl ketone and ZnSO(4), suggesting that J4 triggers apoptosis by caspase and endonuclease activation. Because they are more potent than EA and GEN, and affect both nucleoside transport and DNA cleavage, the WS-5995 antitumor antibiotics might be valuable in polychemotherapy to potentiate the action of antimetabolites and sensitize multidrug-resistant tumor cells.

Publication Types:


PMID: 11395569 [PubMed - indexed for MEDLINE]


 

Related Articles, Links


IGF-II down regulation associated cell cycle arrest in colon cancer cells exposed to phenolic antioxidant ellagic acid.

Narayanan BA, Re GG.

American Health Foundation, 1, Dana Road Valhalla, NY 10595, USA. bhagavat@earthlink.net

Altered cell and tissue differentiation is characteristic of premalignant lesions long before they become invasive and metastatic. One approach to controlling preneoplastic lesions is to block their expansion with non-toxic agents that suppress cell proliferation and induce apoptosis. Here, we show that ellagic acid, a natural, dietary phenolic antioxidant when given at 10(-5) M for 48 hours to colon cancer cells (SW 480), induced down regulation of insulin like growth factor IGF-II, activated p21(waf1/Cip1), mediated a cumulative effect on G1/S transition phase and caused apoptotic cell death. SW480 colon cancer cells expressed significant mRNA levels for the mitogenic insulin like growth factor (IGF-II). Collectively, these observations suggest that growth inhibition by ellagic acid is mediated by signaling pathways that mediate DNA damage, triggers p53, which in turn activates p21 and at the same time alters the growth factor expression, resulting in the down regulation of IGF-II.

Publication Types:


PMID: 11299762 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Erratum in:

  • Carcinogenesis 2001 May;22(5):831-3.


Inhibition of cellular transformation by berry extracts.

Xue H, Aziz RM, Sun N, Cassady JM, Kamendulis LM, Xu Y, Stoner GD, Klaunig JE.

Division of Toxicology, Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.

Recent studies have examined and demonstrated the potential cancer chemopreventive activity of freeze-dried berries including strawberries and black raspberries. Although ellagic acid, an abundant component in these berries, has been shown to inhibit carcinogenesis both in vivo and in vitro, several studies have reported that other compounds in the berries may also contribute to the observed inhibitory effect. In the present study, freeze-dried strawberries (Fragara ananassa, FA) or black raspberries (Rubus ursinus, RU) were extracted, partitioned and chromatographed into several fractions (FA-F001, FA-F003, FA-F004, FA-F005, FA-DM, FA-ME from strawberries and RU-F001, RU-F003, RU-F004, RU-F005, RU-DM, RU-ME from black raspberries). These extracts, along with ellagic acid, were analyzed for anti-transformation activity in the Syrian hamster embryo (SHE) cell transformation model. None of the extracts nor ellagic acid by themselves produced an increase in morphological transformation. For assessment of chemopreventive activity, SHE cells were treated with each agent and benzo[a]pyrene (B[a]P) for 7 days. Ellagic acid, FA-ME and RU-ME fractions produced a dose-dependent decrease in transformation compared with B[a]P treatment only, while other fractions failed to induce a significant decrease. Ellagic acid, FA-ME and RU-ME were further examined using a 24 h co-treatment with B[a]P or a 6 day treatment following 24 h with B[a]P. Ellagic acid showed inhibitory ability in both protocols. FA-ME and RU-ME significantly reduced B[a]P-induced transformation only when co-treated with B[a]P for 24 h. These results suggest that a methanol extract from strawberries and black raspberries may display chemopreventive activity. The possible mechanism by which these methanol fractions (FA-ME, RU-ME) inhibited cell transformation appear to involve interference of uptake, activation, detoxification of B[a]P and/or intervention of DNA binding and DNA repair.

PMID: 11181460 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Effects of ellagic acid by oral administration on N-acetylation and metabolism of 2-aminofluorene in rat brain tissues.

Lin SS, Hung CF, Ho CC, Liu YH, Ho HC, Chung JG.

Department of Radiological Technology, Chungtai Institute of Health Sciences and Technology, Taichung, Taiwan, Republic of China.

Numerous studies have demonstrated that the Acetyl Coenzyme A-dependent arylamine NAT enzyme exist in many tissues of experimental animals including humans, and that NAT has been shown to be exist in mouse brain tissue. Increased NAT activity levels are associated with increased sensitivity to the mutagenic effects of arylamine carcinogens. Attenuation of liver NAT activity is related to breast and bladder cancer processes. Therefore, the effects of ellagic acid (EA) on the in vitro and in vivo N-acetylation of 2-aminofluorene (AF) were investigated in cerebrum, cerebellum and pineal gland tissues from male Sprague-Dawley rats. For in vitro examination, cytosols with or without EA (0.5-500 microM) co-treatment decreased 7-72%, 15-63% and 10-78% of AF acetylation for cerebrum, cerebellum and pineal gland tissues, respectively. For in vivo examination, EA and AF at the same time treated groups with all 3 examined tissues did show significant differences (the changes of total amounts of AF and AF metabolites based on the Anova analysis) when compared to the ones without EA cotreatment rats. The pretreatment of male rats with EA (10 mg/kg) 24 hr prior to the administration of AF (50 mg/kg) (one day of EA administration suffice to induce large changes in phase II enzyme activity) resulted in a 76% decrease in total AF and metabolites in pineal gland but did not show significant differences in cerebrum and cerebellum tissues. This is the first demonstration to show that EA decreases the N-acetylation of carcinogens in rat brain tissues.

PMID: 11071370 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Regulation of rat glutamate-cysteine ligase (gamma-glutamylcysteine synthetase) subunits by chemopreventive agents and in aflatoxin B(1)-induced preneoplasia.

Shepherd AG, Manson MM, Ball HW, McLellan LI.

Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.

Certain dietary constituents can protect against chemically induced carcinogenesis in rodents. A principal mechanism by which these chemopreventive compounds exert their protective effects is likely to be via induction of carcinogen detoxification. This can be mediated by conjugation with glutathione, which is synthesized by the sequential actions of glutamate-cysteine ligase (GLCL) and glutathione synthetase. We have demonstrated that dietary administration of the naturally occurring chemopreventive agents, ellagic acid, coumarin or alpha-angelicalactone caused an increase in GLCL activity of between approximately 3- and 5-fold in rat liver. Treatment with the synthetic antioxidant ethoxyquin or the classic inducer phenobarbital caused < 2-fold induction of GLCL activity in rat liver, which was not found to be significant. The increases in GLCL activity were accompanied by increases (between 2- and 4-fold) in levels of both the catalytic heavy subunit (GLCLC) and regulatory light subunit (GLCLR). No substantial induction of GLCL was observed in rat kidney. The glutathione S-transferase (GST) subunits A1, A3, A4, A5, P1 and M1 were all found to be inducible in rat liver by most of the agents. The greatest levels of induction were observed for GST P1, following treatment with coumarin (20-fold), alpha-angelicalactone (10-fold) or ellagic acid (6-fold), and GST A5, following treatment with coumarin (7-fold), alpha-angelicalactone (6-fold) and ethoxyquin (6-fold). Glutathione synthetase was induced approximately 1.5-fold by coumarin, alpha-angelicalactone, ellagic acid and ethoxyquin. The expression of glutathione-related enzymes was also examined in preneoplastic lesions induced in rat liver by aflatoxin B(1). The majority of gamma-glutamyltranspeptidase (GGT)-positive preneoplastic foci contained increased levels of GLCLC relative to the surrounding tissue. This was usually found to be accompanied by an increase in GLCLR. Cells in the inner cortex of rat kidney were found to contain the highest levels of both GLCLC and GLCLR. The same cells showed the strongest staining for GGT activity.

Publication Types:


PMID: 11023540 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Isothiocyanates and freeze-dried strawberries as inhibitors of esophageal cancer.

Stoner GD, Kresty LA, Carlton PS, Siglin JC, Morse MA.

Division of Environmental Health Sciences, The Ohio State University School of Public Health, and The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus 43210, USA. stoner.21@osu.edu

A group of arylalkyl isothiocyanates were tested for their abilities to inhibit tumorigenicity and DNA methylation induced by the esophageal-specific carcinogen, N-nitrosomethylbenzylamine (NMBA) in the F344 rat esophagus. Phenylpropyl isothiocyanate (PPITC) was more potent than either phenylethyl isothiocyanate (PEITC) or benzyl isothiocyanate (BITC). Phenylbutyl isothiocyanate (PBITC), however, had a lesser inhibitory effect on esophageal tumorigenesis, and phenylhexyl isothiocyanate (PHITC) actually enhanced esophageal tumorigenesis. Thus, the two- and three-carbon isothiocyanates were more effective inhibitors of NMBA-esophageal carcinogenesis than the longer chain isothiocyanates. The effects of the isothiocyanates on tumorigenesis were well correlated as to their effects on DNA adduct formation. The most likely mechanism of inhibition of tumorigenesis by these isothiocyanates is via inhibition of the cytochrome P450 enzymes responsible for the metabolic activation of NMBA in rat esophagus. A freeze-dried strawberry preparation was also evaluated for its ability to inhibit NMBA-esophageal tumorigenesis. It proved to be an effective inhibitor, although not as potent as either PEITC or PPITC. The inhibitory effect of the berries could not be attributed solely to the content of the chemopreventive agent, ellagic acid, in the berries.

PMID: 10630596 [PubMed - indexed for MEDLINE]


 

Related Articles, Links


Tannins, xenobiotic metabolism and cancer chemoprevention in experimental animals.

Nepka C, Asprodini E, Kouretas D.

Cytopathology Laboratory, Serres, Greece.

Tannins are plant polyphenolic compounds that are contained in large quantities in food and beverages (tea, red wine, nuts, etc.) consumed by humans daily. It has been shown that various tannins exert broad cancer chemoprotective activity in a number of animal models. This review summarizes the recent literature regarding both the mechanisms involved, and the specific organ cancer models used in laboratory animals. An increasing body of evidence demonstrates that tannins act as both anti-initiating and antipromoting agents. In view of the fact that tannins may be of valid medicinal efficacy in human clinical trials, the present review attempts to integrate results from animal studies, and considers their possible application in humans.

Publication Types:


PMID: 10510748 [PubMed - indexed for MEDLINE]


 

Related Articles, Links

Click here to read
Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice.

Khanduja KL, Gandhi RK, Pathania V, Syal N.

Department of Biophysics, Postgraduate Institute of Medical Education & Research, Chandigarh, India.

The polyphenolic antioxidants, consumed as an integral part of vegetables, fruits and beverages, are suggested as possessing anticarcinogenic properties. In the present study we have looked into the anticarcinogenic potential of plant polyphenols ellagic acid (EA) and quercetin against N-nitrosodiethylamine-induced lung tumorigenesis in mice. Ellagic acid was able to significantly reduce tumour incidence to 20% from the control value of 72.2%. Similarly, tumour burden was also decreased, although not significantly, from 3.15 to 2.5. Quercetin (QR) caused the tumour incidence to decrease from 76.4% to 44.4% when fed until the third dose of carcinogen. Both of the polyphenols suppressed the tumour incidence mainly by acting at the initiation phase of the carcinogenesis, since continuing the feeding of polyphenols until the termination of the experiment did not cause any apparent change in tumour incidence or tumour burden. Besides this, ellagic acid was found to be a better chemopreventor than quercetin. In order to search for their mechanism of action, the effect of feeding of these compounds on reduced glutathione (GSH), an important endogenous antioxidant, and on lipid peroxidation was investigated. Both ellagic acid and QR caused a significant increase in GSH and decrease in NADPH- and ascorbate-dependent lipid peroxidation. Ellagic acid was found to be more effective in decreasing the lipid peroxidation and increasing the GSH. This may be one of the reasons for its observed better anticarcinogenic property as compared to quercetin.

PMID: 10418948 [PubMed - indexed for MEDLINE]

Back      Next

 

 

   

 

investors | career | contact us

 
Terms of Use | Privacy Statement Copyright © 2000-2009 Partnec Biotechnology LLC  All Rights Reserved.