
The fruiting body of Ganoderma (G.) lucidum (Reishi in
Japanese) is a well known Chinese crude drug which has
been used clinically in East Asia and gives much attention as
a home remedy. Over one hundred highly oxygenated and
pharmacologically active lanostane-type triterpenoids have
been isolated from the fruiting bodies and the mycelium of
G. lucidum.1—24) Some of them have been shown to have cy-
totoxicity against hepatoma cells in vitro (ganoderic acids U,
V, W, X and Y),25) anti-histamine releasing activity in rat
mast cells (ganoderic acids C and D),26) inhibitory activity
against angiotensin converting enzyme (ganoderic acid F),27)

hepatoprotective activity (ganoderic acid A),28) and an in-
hibitory effect on farnesyl protein transferase (ganoderic acid
A and methyl ganoderate A).29) Earlier and more recently, we
reported the isolation of new triterpenoids, ganoderic acids a
and b , and lucidumols A and B, with several known com-
pounds from the spores and fruiting bodies of this mush-
room.30,31) Of the compounds isolated, ganoderiol F and gan-
odermanontriol were found to have anti-human immunodefi-
ciency virus (anti-HIV-1) activity, and ganoderic acid b , lu-
cidumol B, and ganolucidic acid A showed an inhibitory ef-
fect on HIV-1 protease.

As part of our continuing research to find pharmacologi-
cally active constituents from G. lucidum, we have isolated
six new lanostane-type triterpenes, called ganoderic acids g
(1), d (2), e (3), z (4), h (5) and q (6), from a chloroform-
soluble fraction of the spores of G. lucidum and examined
their cytotoxicity against Meth-A (sarcoma) and LLC (Lewis
lung carcinoma) mouse tumor cell lines. In this paper, we de-
scribe the characterization of these new lanostane-type triter-
penes (1—6), as well as cytotoxic activity of triterpenes iso-
lated from the spores of this mushroom.

Results and Discussion
Silica gel column chromatography (CC) and prep. HPLC

with an ODS-80TS column of a CHCl3-soluble fraction of the
MeOH extract of spores of G. lucidum resulted in the isola-
tion of eight triterpenes (1—8). The structures of known
compounds were identified as ganolucidic acid D (7)10) and

ganoderic acid C2 (8),13) which had previously been isolated
from the same mushroom, by comparison with the reported
data.

Ganoderic acid g (1) was obtained as colorless needles
(MeOH–H2O), mp 243—245 °C, with a positively optical ro-
tation ([a]D 1156°). The ultraviolet (UV) absorbance at
252 nm (log e 3.82) and infrared (IR) band at 1660 cm21 sug-
gested the presence of a conjugated carbonyl group. The
high-resolution electron impact mass (HR-EIMS) spectrum
revealed the molecular formula of 1 to be C30H44O7.

The 1H-NMR spectrum showed signals for seven methyls
including a doublet at d 0.96 (J56.3 Hz) and an allylic
methyl at d 1.88 (J51.5 Hz), three oxymethylenes at d 4.53
(dt, J59.2, 5.1 Hz), 4.59 (dd, J59.8, 6.6 Hz) and 4.70 (dd,
J59.2, 6.3 Hz), and an olefinic methine at d 6.61 (dd, J59.2,
1.5 Hz) (Table 1). The 13C-NMR, in combination with distor-
tionless enhancement by polarization transfer (DEPT) and
1H-detected multiple quantum coherence (HMQC) experi-
ments, showed signals for seven methyls, six methylenes,
seven methines (including three oxymethylenes at d 65.9,
68.2 and 71.6, and an sp2 methine at d 143.2), seven quater-
nary carbons (including three sp2 carbons at d 128.4, 139.6
and 160.4), and three carbonyls at d 170.2, 200.3 and 218.6
(Table 2). On the basis of spectroscopic evidence by 1H–1H-
correlation spectroscopy (COSY) and HMQC experiments,
all protons and carbons were assigned as shown in Tables 1
and 2, respectively. These 1H- and 13C-NMR spectral data in-
dicated a highly oxygenated lanostane-type triterpene close
to the structure of ganoderic acid A (9),1) isolated from the
same mushroom, except for those of C-22 to C-27. The
higher-field shifts of C-22, C-23, C-26 and C-27 by 6.8,
142.5, 6.3 and 4.3 ppm, respectively, and the lower-field
shifts of C-24 and C-25 by 96.4 and 93.8 ppm, respectively,
compared with those of 9 suggested that an allylic alcohol
group may be located at C-23—25 in the side chain. The
presence of the allylic alcohol group in the side chain of 1
supported by prominent fragment ions at m/z 401 [e]1, 359
[a]1 and 157 [b]1 corresponding to a loss of the side chain
molecule in the EIMS spectrum (Fig. 1). The fragmentation
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ions m/z 498 [M2H2O]1, 480 [M22H2O]1 and 462 [M2
3H2O]1, due to the successive losses of 18 mass units, indi-
cated the presence of three hydroxyl groups.

The connectivities of 1 were established by interpretation

of the significant heteronuclear multiple bond correlation
(HMBC) spectrum. Correlations among the signals H-5 and
C-3/C-7/C-9; H3-28/H3-29 and C-3; H2-6 and C-8; H3-19 and
C-9; and H2-12 and C-11, confirmed that the positions of ke-
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Table 1. 1H-NMR Spectral Data of Compounds 1—7 (400 MHz, in CDCl31CD3OD)

1H 1 2 3 4

1-H (a) 1.53 dt (13.5, 7.0) 1.70 td (13.9, 4.6) 0.98 m 1.22 m
1-H (b) 2.81 ddd (13.5, 8.3, 5.9) 2.94 ddd (13.9, 8.2, 5.9) 2.78 dt (9.9, 3.5) 2.82 m
2-H (a) 2.45 dd (15.5, 7.0) 2.45 m 1.68 m 1.71 m
2-H (b) 2.53 ddd (15.5, 9.2, 5.9) 2.62 ddd (15.5, 9.6, 5.9)
3-H (a) 3.16 dd (11.2, 5.0) 3.23 dd (10.8, 6.3)
5-H 1.72 m 2.09 dd (12.8, 2.4) 0.91 m 1.59 m
6-H (a) 2.03 m 1.74 m 2.19 m 2.62 d (15.5)
6-H (b) 1.71 m 1.55 m 2.56 dd (15.5, 3.0)
7-H (a) 4.59 dd (9.8, 6.6) 4.84 t (9.4)
7-H (b) 4.56 br d (3.4)
12-H (a) 2.79 d (15.7) 2.77 d (17.9) 2.90 d (16.7) 2.90 d (16.0)
12-H (b) 2.49 d (15.7) 2.40 d (17.9) 2.66 d (16.7) 2.69 d (16.0)
15-H (b) 4.70 dd (9.2, 6.3) 4.53 br t (5.1)
16-H (a) 1.77 m 1.90 m 2.83 m 2.84 m
16-H (b) 2.07 dd (19.3, 9.7) 2.80 m
17-H 1.87 m 1.92 m 2.18 m 2.22 m
18-H3 0.94 s 0.82 s 0.95 s 0.81 s
19-H3 1.26 s 1.02 s 1.22 s 1.27 s
20-H 1.26 m 1.31 m 1.60 m 1.68 m
21-H3 0.96 d (6.3) 0.91 d (6.5) 1.07 d (6.1) 1.04 d (6.2)
22-H 1.45 m 1.48 m 1.55 m 1.50 m
22-H 1.62 m 1.58 br t (11.1)
23-H 4.53 td (9.2, 5.1) 4.51 m 4.56 m 4.53 dd (13.2, 9.2)
24-H 6.61 dd (9.2, 1.5) 6.53 br d (8.7) 6.59 dd (9.2, 1.5) 6.57 br d (9.2)
27-H3 1.88 d (1.5) 1.87 br s 1.88 d (1.5) 1.87 br s
28-H3 1.13 s 1.16 s 1.03 s 1.02 s
29-H3 1.11 s 1.08 s 0.84 s 0.88 s
30-H3 1.26 s 1.28 s 1.38 s 1.54 s

1H 5 6 7

1-H (a) 0.92 m 1.10 m 1.55 m
1-H (b) 2.57 dt (13.3, 3.9) 2.72 m 2.97 ddd (13.8, 8.3, 5.6)
2-H (a) 1.65 m 1.73 m 2.56 m
2-H (b)
3-H (a) 3.19 dd (8.9, 7.3) 3.22 dd (8.9, 7.2)
5-H 0.89 m 1.55 dd (14.5, 2.2)
6-H (a) 2.25 m 2.72 m
6-H (b) 1.64 m 2.57 dd (14.5, 2.2)
7-H (a) 4.76 t (8.7)
7-H (b)
12-H (a) 4.40 s 4.51 s 2.73 d (17.2)
12-H (b) 2.41 d (17.2)
15-H (b) 4.31 dd (8.4, 5.6)
16-H (a) 2.68 dd (19.6, 8.7) 2.75 dd (18.0, 9.8) 2.44 ddd (16.6, 8.5, 6.8)
16-H (b) 2.21 dd (19.6, 9.8) 2.63 m 1.69
17-H 2.50 dd (8.7, 4.0) 1.99 dd (18.0, 8.2) 1.72 m
18-H3 0.75 s 0.62 s 0.85 s
19-H3 1.29 s 1.37 s 1.01 s
20-H 2.00 m 1.78 m 1.26 s
21-H3 1.16 d (6.8) 1.15 d (6.5) 0.92 d (6.3)
22-H 1.66 m 1.46 m 1.85 m
22-H 1.62 m
23-H 4.56 ddd (12.6, 8.9, 5.1) 4.54 ddd (13.8, 8.9, 4.8) 4.51 m
24-H 6.57 br d (8.9) 6.52 br d (8.9) 6.54 d (8.9)
27-H3 1.88 br s 1.87 br s 1.88 br s
28-H3 1.02 s 1.05 s 1.08 s
29-H3 0.86 s 0.89 s 1.13 s
30-H3 1.43 s 1.68 s 1.18 s

d Values in ppm and coupling constants (in parentheses) in Hz.



tone and hydroxyl, and a ,b-unsaturated carbonyl groups
were at C-3 and C-7, and C-8, C-9 and C-11, respectively
(Fig. 2). Long-range correlations between H-15/C-17 and H3-
30/C-15 indicated the presence of another hydroxyl group at
C-15. On the other hand, the connectivity of an allylic alco-
hol group in the side chain moiety at C-23, C-24 and C-25 as
shown in formula 1 was revealed by the 1H–1H correlations
between H2-22 and H-23; H-23 and H-24; and H-24 and H3-

27. This was further supported by long-range correlations be-
tween H-20 and C-23; H2-22 and C-24; H-23 and C-25; and
H-24 and C-26/C-27 in the HMBC spectrum.

Two equatorial hydroxyl groups at C-7 (b-orientation) and
C-15 (a-orientation) were deduced from the multiplicities of
H-7 (dH 4.59, dd, J59.8 and 6.6 Hz) and H-15 (dH 4.70, dd,
J59.2 and 6.3 Hz), which was supported by nuclear Over-
hauser effect (NOE) correlations observed from H-7 to H-5
and H3-30, and H-15 to H3-18 in the nuclear Overhauser ef-
fect spectroscopy (NOESY) spectrum (Fig. 2). The configu-
ration of the double bond at C-24 and C-25 was confirmed to
be an E form by 1H-NMR chemical shift of H-24 (dH 6.61),
which resembles those of tiglic acid32) and ganoderic acids
U—Z.33) Determination of the absolute configuration at C-23
was examined by a modification of Mosher’s method.34)

Under the standard reaction conditions with (R)-(1)- and
(S)-(2)-MTPA for 20 h, 1 gave 15,23-di-(R)-(1)-MTPA ester
and 7,15,23-tri-(S)-(2)-MTPA ester, respectively. However, 1
gave 15,23-di-(R)-(1)-MTPA ester (1a) and 15,23-di-(S)-
(2)-MTPA ester (1b), respectively, when stirred for 6 h. In
the 1H-NMR spectrum of (S)-(2)-MTPA ester (1b), proton
signals assigned for H-20, H3-21 and H2-22 were observed at
a higher-field than those in the (R)-(1)-MTPA ester (1a),
while signals due to H-24 and H3-27 in the former ester were
shifted to a lower-field than those in the latter ester (Fig. 3).
Therefore, the absolute configuration at C-23 was concluded
to be 23S. Consequently, the structure of 1 was determined as
(23S)-7b ,15a ,23-trihydroxy-3,11-dioxolanosta-8,24(E)-
diene-26-oic acid.
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Fig. 2. Long-range and NOE Correlations Observed in the HMBC and NOESY Spectra of 1—6 (HMBC →, NOE ↔)

Fig. 1. Proposed Mass Fragmentation Pattern of 1

Table 2. 13C-NMR Spectral Data of Compounds 1—7 (100 MHz, in
CDCl31CD3OD)

C 1 2 3 4 5 6 7

1 35.2 34.9 35.7 33.6 34.4 33.2 34.9
2 33.9 34.3 28.0 26.9 27.1 26.7 34.0
3 218.6 219.5 78.7 77.2 78.0 76.8 219.6
4 46.4 46.6 39.7 39.0 38.4 40.0 46.8
5 48.3 45.3 50.0 50.8 49.0 51.2 51.3
6 28.1 27.7 27.6 36.2 26.5 36.4 18.4
7 68.2 66.6 67.7 199.9 66.2 199.5 29.3
8 160.4 160.9 158.4 148.6 156.6 146.2 165.1
9 139.6 139.7 143.9 151.8 142.0 151.0 137.9

10 37.6 37.9 39.4 40.4 38.1 38.8 36.8
11 200.3 200.1 200.1 200.1 199.5 201.4 199.1
12 51.5 52.0 51.2 49.6 78.2 77.6 51.6
13 46.3 47.0 46.4 44.2 51.7 49.5 46.4
14 53.7 53.4 60.3 57.0 60.1 57.5 53.3
15 71.6 71.7 218.5 209.0 217.4 207.6 72.0
16 35.6 37.5 42.0 45.6 36.8 36.7 38.1
17 48.5 49.7 47.2 42.7 46.2 45.5 49.0
18 16.6 17.3 17.6 15.9 11.9 10.6 16.7
19 18.9 17.5 18.8 17.6 18.6 17.6 18.6
20 33.1 33.5 34.0 33.1 28.5 29.4 33.1
21 19.0 19.2 20.0 19.3 22.0 21.3 18.8
22 42.9 43.3 43.7 40.4 41.3 41.8 42.9
23 65.9 66.4 66.8 65.9 67.0 66.5 66.0
24 143.2 142.4 144.2 142.8 142.7 142.2 142.4
25 128.4 130.2 129.6 128.8 129.3 129.0 129.5
26 170.2 172.0 171.2 170.8 170.8 175.0 171.5
27 12.3 13.1 13.1 12.6 12.8 12.6 12.7
28 27.0 27.5 28.6 27.5 27.9 27.4 27.5
29 20.1 20.5 16.1 15.3 15.2 15.2 20.2
30 19.0 21.0 24.9 21.6 22.9 20.1 18.7



Ganoderic acid d (2) was isolated as white amorphous
powder, [a]D 1160°, and possessed the same molecular for-
mula as that of 1, HR-EIMS. Its UV and IR spectra exhibited
absorptions at 252 nm (log e 3.70) and 1657 cm21, ascribable
to a conjugated ketone. The 1H- and 13C-NMR spectra of 2
were quite similar to those of 1. Careful examination of the
spectral data, however, revealed several significant differ-
ences. The most noticeable change were higher-field shifts of
H-7 (dH 4.56, br d, J53.4 Hz) and H-15 (dH 4.53, br t,
J55.1 Hz) by 0.3 and 1.3 ppm, respectively, and a higher-
field shift of C-7 by 1.6 ppm, compared with the correspond-
ing signals of 1 in the 1H- and 13C-NMR spectra (Tables 1
and 2). In the HMBC spectrum of 2, long-range correlations
were also similar to those of 1 (Fig. 2). A detailed compari-
son of spectral data of 1 and 2 with ganoderic acid A (9) and
B8 (10)13) showed that 2 was a stereoisomer of 1 with regard
to a hydroxyl group at C-7. This was further supported by a
NOESY experiment, which showed NOE correlations be-
tween H-7 and H3-19/H3-29, and H-15 to H3-18 (Fig. 2). The
configurations of C-23 and C-24 were assigned as 23S and
24E on the basis of the proton and carbon signals of the side
chain moiety (C-20—27), which were very similar to those
of 1. Consequently, the structure of 2 was determined to be
(23S)-7a ,15a ,23-trihydroxy-3,11-dioxolanosta-8,24(E)-
diene-26-oic acid.

Ganoderic acid e (3) was also obtained as colorless nee-
dles (MeOH–H2O) of mp 249—251 °C. The molecular for-
mula was determined as C30H44O7 by HR-FABMS.

Inspection of spectral data of 3 revealed the presence of
the same functional groups as in 1, including three oxymeth-
ylenes at d 3.16 (dd, J511.2, 5.0 Hz), d 4.84 (t, J59.4 Hz)
and d 4.56 (m), and an sp2 methine at d 144.2 and three car-
bonyls (d 171.2, 200.1 and 218.5). In the 13C-NMR spec-
trum, most of the signals in 3 were superimposable over

those of 1, except signals C-2, C-3, C-4, C-14, C-15 and C-
16; the signals of C-2, C-3 and C-4 were shifted to a higher-
field by 5.9, 139.9 and 6.7 ppm, respectively, while those of
C-14, C-15 and C-16 shifted to a lower-field by 6.6, 146.9
and 6.4 ppm, respectively, compared with those of 1, indicat-
ing a hydroxyl group at C-3 and a carbonyl group at C-15.
This was further supported by HMBC correlations observed
between signals of H3-28 (dH 1.03)/H3-29 (dH 0.84) and C-3
(dC 78.7), as well as signals between H3-30 (dH, 1.38) and C-
15 (dC, 218.5) (Fig. 2). Furthermore, the proton and carbon
signals in 3 were also superimposable on those of ganoderic
acid B (11),1) except for the signals due to the side chain
moiety (C-20—27), where the former possesses an allylic al-
cohol group at C-23—25 and the latter possesses an isolated
carbonyl group.

The b orientation of hydroxyl groups at C-3 and C-7 was
deduced from the multiplicities of H-3 (dH 3.16, dd, J511.2,
5.0 Hz) and H-7 (dH 4.84, t, J59.4 Hz). This was further con-
firmed by NOE correlations observed between H-3 and H-5
and between H-5 and H-7 in the NOESY spectrum (Fig. 2).
For determination of absolute configuration  at C-23, 3 was
treated with (R)-(1)- and (S)-(2)-MTPA chloride to give
3,23-di-(R)-(1)-MTPA ester (3a) and 3,23-di-(S)-(2)-MTPA
ester (3b), respectively. The chemical shift difference of 3a
and 3b were observed in the same direction as 1a and 1b in
the 1H-NMR spectrum (Fig. 3). Consequently, the absolute
configuration at C-23 in 3 was assigned as 23S. The structure
of 3 was established as (23S)-3b ,7b ,23-trihydroxy-11,15-
dioxolanosta-8,24(E)-diene-26-oic acid.

Ganoderic acid z (4) was isolated as colorless needles
(MeOH–H2O), mp 143—145 °C. Its IR spectrum exhibited
absorption bands due to a five-membered carbonyl
(1747 cm21) and a ,b-unsaturated carbonyl (1698 cm21)
groups, and the UV spectrum showed an absorption at
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Fig. 3. Chemical Shift Difference for the (S)-(2)-MTPA Esters (1b, 3b, 5b and 7b) and (R)-(1)-MTPA Esters (1a, 3a, 5a and 7a) in ppm at 400 MHz



257 nm (log e , 3.81) due to an  a ,b-unsaturated carbonyl
group. In the positive-mode FABMS of 4, quasimolecular ion
peaks were observed at m/z 515 [M1H]1 and 537 [M1Na]1,
and the molecular formula, C30H42O7, was determined by
HR-FABMS.

The 1H- and 13C-NMR spectra of 4 were similar to those
of 3. However, an oxymethylene signal (dH 4.84/dC 67.7) ob-
served in the spectrum of 3 was absent in that of 4. Instead, a
new signal at dC 199.9 was observed, indicating that 4 has a
carbonyl group at C-7. The connectivity of the carbonyl
group was confirmed by HMBC correlations observed be-
tween H2-6 (dH 2.56 and dH 2.62) and C-7 (dC 199.9) (Fig.
2). The carbon signals at dC 146.8 and 151.8 assigned as C-8
and C-9 correlated with H3-30 and H3-19 methyl protons, re-
spectively, in the HMBC spectrum. The carbon signal of C-8
was more shielded than that of C-9. The configuration of a
hydroxyl group at C-3 was assigned as b on the basis of mul-
tiplicity (dH 3.22, dd, J510.8, 6.3 Hz). The configurations of
C-23 and C-24 were assigned as 23S and 24E on the basis of
NMR data, which were similar to those of 3. Ganoderic acid
z (4) was accordingly determined as (23S)-3b ,23-dihydroxy-
7,11,15-trioxolanosta-8,24(E)-diene-26-oic acid.

Ganoderic acid h (5) was isolated as yellow needles
(MeOH–H2O), mp 212—214 °C, with a positive optical 
rotation ([a]D 1128°, EtOH). The molecular formula,
C30H44O8, of 5 was determined by positive-mode FABMS.

The 1H- and 13C-NMR spectra of 5 exhibited signals due
to four oxymethylenes (dH 3.19/dC 78.0, dH 4.40/dC 78.2, dH

4.56/dC 67.0 and dH 4.76/dC 66.2) and an olefinic methine
(dH 6.57/dC 142.7). The 1H-NMR spectral feature of 5
closely resembled that of 3 except for a singlet signal at d
4.40 due to the oxymethylene proton, instead of a pair of
doublets arising from 12-methylene protons of 3 and appre-
ciable higher-field and lower-field shifts of H3-18 and H3-19
signals, respectively, indicating that 5 may be a 12-hydroxy
derivative of 3. This was supported by the 13C-NMR spec-
trum analyzed by means of the HMQC spectrum. The signals
of C-12 and C-13 were shifted to the lower-field by 27.0 and
5.3 ppm, respectively, and the signal due to C-18 was shifted

to the higher-field by 5.7 ppm, compared with the corre-
sponding signals in 3. This was confirmed by the HMBC
correlations observed between signals of H3-18 and C-12,
and those of H-12 and C-11 (Fig. 2).

The b-configuration of a hydroxyl group at C-12 was in-
ferred from NOE correlations observed between H-12 (d
4.40) and H3-30 (d 1.43) in the NOESY spectrum. The ab-
solute stereochemistry at C-23 was determined by a modifi-
cation of Mosher’s method. The signals due to H-20, H3-21
and H2-22 in 3,23-di-(S)-(2)-MTPA ester (5b) were ob-
served at higher fields, compared to those of 3,23-di-(R)-
(1)-MTPA ester (5a), while the signals due to H-24 and H3-
27 in 5b were observed at lower-fields (Fig. 3). Thus, the ab-
solute configuration at C-23 was assigned to be S. The struc-
ture of 5 was determined as (23S)-3b ,7b ,12b ,23-tetrahy-
droxy-11,15-dioxolanosta-8,24(E)-diene-26-oic acid.

Ganoderic acid q (6) was obtained as yellow needles
(MeOH–H2O), mp 131—132 °C, with a positive optical rota-
tion ([a]D 171.3°). In the positive-mode FABMS of 6, quasi-
molecular ion peaks were observed at m/z 531 [M1H]1 and
553 [M1Na]1, and the molecular formula, C30H42O8, was
determined by HR-MS measurement.

The 1H-NMR spectrum of 6 was quite similar to that of 5,
except for absence of an oxymethylene signal at d 4.76 (t,
J58.7 Hz) and lower-field shifts of H-5, Ha-6 and Hb-6 by
0.66, 0.93 and 0.47 ppm, respectively (Table 1); this sug-
gested the presence of a 7-oxo group in 6, instead of a 7-hy-
droxyl group in 5. It was supported by 13C-NMR spectrum
evidence that signals due to C-6 and C-7 (d 9.9 and 133.3,
respectively) shifted to the lower-field, reflecting the struc-
tural change in ring B. Furthermore, the HMBC spectrum
showed correlation peaks between H-5 and C-7/C-9; H2-6
and C-8; and H3-19 and C-9, which led to the conclusion that
the structure of 6 was (23S)-3b ,12b ,23-trihydroxy-7,11,15-
trioxolanosta-8,24(E)-diene-26-oic acid.

Ganolucidic acid D (7) was isolated from the fruiting body
of G. lucidum by Nishitoba et al.,21) who determined the ab-
solute configuration at C-23 as 23S, by converting 7 to a
mono-p-dimethylaminobenzoate derivative and measuring its
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CD and UV spectra.35) Herein, 7 was converted to 15,23-di-
(R)-(1)-MTPA ester (7a) and 15,23-di-(S)-(2)-MTPA ester
(7b) using a modification of Mosher’s method. The chemical
shift difference between 7a and 7b was found to be the same
as those observed in the respective derivatives of 1, 3 and 5
in the 1H-NMR spectra (Fig. 3). Consequently, the absolute
configuration at C-23 of 7 was confirmed to be 23S.

The compounds isolated from the spores of G. lucidum
were tested for their cytotoxicity against Meth-A and LLC
tumor cell lines. The results (ED50 values) are summarized in
Table 3. The ganoderic alcohols lucidumols A and B, gano-
dermanondiol, ganoderiol F, and ganodermanontriol showed
cytotoxic effects on both tumor cells. Of these, lucidumol A
exhibited the most potent cytotoxicity (ED50 value,
2.3 mg/ml) against LLC tumor cells and ganodermanondiol
(ED50, 3.4 mg/ml) against Meth-A cells. However, ganoderic
acids, including ganoderic acids g—q isolated in the present
experiment were inactive to both tumor cells.

Experimental
Melting points were measured on a Yanagimoto micro hot-stage melting

point apparatus and are not corrected. Optical rotations were measured with
a DIP-360 automatic polarimeter (JASCO). UV spectra were measured with
a UV-2200 UV-VIS recording spectrophotometer (Shimadzu), and IR spec-
tra were measured with a FT/IR-230 infrared spectrometer (JASCO). 1H-
and 13C-NMR spectra were measured with a JNA-LAA 400 WB-FT (1H,
400 MHz; 13C, 100 MHz; JEOL) spectrophotometer, the chemical shifts
being represented as ppm with tetramethylsilane as an internal standard.
HR-FABMS and FABMS were measured with a JMX-AX 300L spectrome-
ter (JEOL) using glycerol as a matrix. HR-EIMS and EIMS were measured
with a JMX-AX 505 HAD mass spectrophotometer (JEOL). Prep. HPLC
was carried out on a Gilson HPLC system; pump: model 305 and 306, de-
tector: 119 UV/VIS detector. Column chromatography was carried out on
silica gel (Kieselgel 60, 70—230 mesh, Merck). Thin layer chromatography
(TLC) was carried out on pre-coated Silica gel 60 F254 plates (0.25 mm,
Merck) and RP-18 F254S (0.25 mm, Merck), and spots were detected under a
UV light and by spraying 10% H2SO4 followed by heating.

Plant Materials The spore of G. lucidum was provided by Linzhi Gen-

eral Institute Co., Ltd. (Tokyo). The voucher specimen is deposited in the
authors’ laboratory.

Chemicals Lucidumols A and B, ganodermanondiol, ganoderiol F, gan-
odermanontriol, ganoderic acids A, B, C1, C6 and G, ganolucidic acid A,
and lucidenic acid a were obtained from the spores of G. lucidum by a
method described previously.31)

Cells Meth-A cells (mouse sarcoma) and LLC (mouse lung carcinoma)
were purchased from RIKEN Cell Line Bank (Tsukuba, Japan). The cells
were maintained as monolayer cultures in RPMI 1640 medium supple-
mented with 10% fetal bovine serum, sodium bicarbonate, penicillin G and
streptomycin.

Isolation Procedure The spores of G. lucidum KARST (250 g) were ex-
tracted with MeOH (1.5 l33) by refluxing for 3 h to give 35.7 g of a solid ex-
tract. The MeOH extract (30 g) was suspended in 90% MeOH (300 ml) and
extracted with hexane (150 ml32). The resulting MeOH solution was con-
centrated in vacuo and suspended in H2O (300 ml). The suspension was ex-
tracted with CHCl3 (150 ml32) to give a CHCl3-soluble fraction (23.2 g).
The fraction (20 g) was chromatographed on a column of silica gel. Elution
was started with hexane–acetone (3 : 2, 1 : 1 and 2 : 3) and then CHCl3–
MeOH (4 : 1) yielded 6 fractions (fr. A—F; 1.3, 5.5, 10.1, 1.9, 0.7 and 0.4 g,
respectively). Column chromatography of fr. D on silica gel (CHCl3–MeOH,
19 : 1) was separated into five subfractions (subfr. D1—D5; 0.12, 0.26, 0.24,
0.30 and 0.63 g, respectively). Purification of subfr. D4 by the prep. HPLC, a
linear gradient of CH3CN (25%→65%) in 3% AcOH, afforded 1 (11.4 mg,
Rt 81.0 min), 2 (1.0 mg, Rt 82.8 min), 3 (18.6 mg, Rt 72.6 min), 4 (1.5 mg, Rt

74.4 min), 5 (12.5 mg, Rt 70.4 min), 6 (2.4 mg, Rt 67.0 min), 7 (5.0 mg, Rt

91.0 min) and 8 (12.0 mg, Rt 78.6 min).
(23S)-7bb ,15aa ,23-Trihydroxy-3,11-dioxolanosta-8,24(E)-diene-26-oic

Acid (1, Ganoderic Acid gg) Colorless needles (MeOH–H2O), mp 243—
245 °C. [a]D 1155.3° (c50.1, EtOH). IR nmax cm21: 3373 (OH), 1706,
1675, 1660 (C5O). UV lmax nm (log e): 208 (4.05), 252 (3.82). EIMS m/z
(rel. int.): 516 [M]1 (3), 498 [M2H2O]1 (15), 480 [M22H2O]1 (27), 462
[M23H2O]1 (15), 401 [e]1 (8), 370 [M2C6H2O4]

1 (27), 359 [a]1 (7), 306
[g1H]1 (10), 252 [M2C6H2O4]

1 (40), 157 [b]1 (22), 69 (100). HR-EIMS
m/z: 516.3092 (M1, Calcd for C30H44O7: 516.3088). 1H- and 13C-NMR data:
see Tables 1 and 2. In the HMBC spectrum, the following correlations were
observed: C-1/H-2,19; C-2/H-1; C-3/H-1,2,5,28,29; C-4/H-2,5,6,28,29; C-
5/H-6; C-6/H-5,7; C-7/H-5,6; C-8/H-6,30; C-9/H-5,19; C-10/H-5,6,19; C-
11/H-12; C-12/H-18; C-13/H-12,15,16,20; C-14/H-12,16,18; C-15/H-30; C-
16/H-20; C-17/H-15,18,21,22; C-18/H-12,30; C-19/H-1,5,6; C-20/H-21,22;
C-21/H-20,22; C-23/H-20,27; C-24/H-22,23,27; C-25/H-23,27; C-26/H-
24,27; C-27/H-24; C-28/H-5,29; C-29/H-5,28; C-30/H-12.

(R)-(1)-MTPA Ester of 1(1a) (R)-(1)-MTPA chloride (15 mg,
59 mmol) in pyridine (0.2 ml) was added to a solution of 1 (2.0 mg,
3.9 mmol) in CCl4 (0.2 ml). After stirring at room temperature for 6 h, the
mixture was poured into water (10 ml), and extracted with CHCl3 (10 ml3
2). The CHCl3 extract was concentrated in vacuo and purified by preparative
thin layer chromatography (TLC) [hexane–acetone (1 : 1)] to give a 15,23-di-
(R)-(1)-MTPA ester (1a, 1.5 mg) as a colorless oil. 1H-NMR (CDCl3): d
1.37 (1H, m, Ha-1), 2.89 (1H, ddd, J513.7, 7.8, 5.2 Hz, Hb-1), 2.45 (2H, m,
H-2), 1.41 (1H, m, H-5), 1.39, 1.63 (each 1H, m, H-6), 3.63 (1H, t,
J57.9 Hz, H-7), 2.71 (1H, d, J516.9 Hz, Ha-12), 2.51 (1H, d, J516.9 Hz,
Hb-12), 5.89 (1H, dd, J59.7, 5.8 Hz, H-15), 1.82 (1H, m, H-16), 1.85 (1H,
m, H-17), 0.92 (3H, s, H-18), 1.17 (3H, s, H-19), 1.37 (1H, m, H-20), 0.96
(3H, d, J56.3 Hz, H-21), 1.80, 1.62 (each 1H, m, H-22), 5.79 (1H, ddd,
J518.7, 9.7, 5.1 Hz, H-23), 6.51 (1H, dd, J59.7, 1.5 Hz, H-24), 2.01 (3H, d,
J51.5 Hz, H-27), 1.04 (3H, s, H-28), 1.03 (3H, s, H-29), 1.22 (3H, s, H-30),
3.52, 3.62 (each 3H, s, MTPA-OCH3).

(S)-(2)-MTPA Ester of 1 (1b) (S)-(2)-MTPA chloride (15 mg) in pyri-
dine (0.2 ml) was added to a mixture of 1 (2 mg) in CCl4 (0.2 ml). Workup as
described above gave a 15,23-di-(S)-(2)-MTPA ester (1b, 1.0 mg) as a col-
orless oil. 1H-NMR (CDCl3): d 1.36 (1H, m, Ha-1), 2.88 (1H, ddd, J513.7,
7.8, 5.2 Hz, Hb-1), 2.44 (2H, m, H-2), 1.46 (1H, m, H-5), 1.41, 1.83 (each
1H, m, H-6), 3.82 (1H, t, J58.4 Hz, H-7), 2.61 (1H, d, J517.2 Hz, Ha-12),
2.44 (1H, d, J517.2 Hz, Hb-12), 5.93 (1H, dd, J510.1, 5.8 Hz, H-15), 1.71
(1H, m, H-16), 1.80 (1H, m, H-17), 0.90 (3H, s, H-18), 1.09 (3H, s, H-19),
1.33 (1H, m, H-20), 0.85 (3H, d, J56.3 Hz, H-21), 1.68, 1.54 (each 1H, m,
H-22), 5.77 (1H, ddd, J517.8, 9.4, 5.9 Hz, H-23), 6.62 (1H, dd, J59.4,
1.5 Hz, H-24), 2.02 (3H, d, J51.5 Hz, H-27), 1.07 (3H, s, H-28), 1.06 (3H, s,
H-29), 1.22 (3H, s, H-30), 3.46, 3.54 (each 3H, s, MTPA-OCH3).

(23S)-7aa ,15aa ,23-Trihydroxy-3,11-dioxolanosta-8,24(E)-diene-26-oic
Acid (2, Ganoderic Acid dd) White amorphous powder, [a]D 1160.0°
(c50.074, EtOH). IR nmax cm21: 3419 (OH), 1763, 1657 (C5O). UV lmax

nm (log e): 207 (3.95), 252 (3.70). EIMS m/z (rel. int.): 516 [M]1 (4), 498
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Table 3. Cytotoxicity of Compounds Isolated from the Spores of Gano-
derma lucidum on Tumor Cell Growth

ED50 (mg/ml)
Compound

Meth-A LLC

Ganoderic acid g (1) 15.6 .20
Ganoderic acid d (2) .20 .20
Ganoderic acid e (3) 12.2 .20
Ganoderic acid z (4) .20 .20
Ganoderic acid h (5) .20 .20
Ganoderic acid q (6) 5.7 15.2
Ganolucidic acid D .20 .20
Ganoderic acid C2 .20 .20
Lucidumol A 4.2 2.3
Lucidumol B 8.5 16.6
Ganodermanondiol 3.4 12.5
Ganoderiol F 4.4 6.0
Ganodermanontriol 5.4 9.6
Ganoderic acid A .20 .20
Ganoderic acid B .20 .20
Ganoderic acid C1 .20 17.0
Ganolucidic acid A .20 15.5
Lucideric acid a .20 17.8
Ganoderic acid C6 .20 .20
Ganoderic acid G 6.8 .20
Adriamycina) 0.01 0.15

a) Positive control.



[M2H2O]1 (21), 480 [M22H2O]1 (29), 370 [M2C6H2O4]
1 (29), 306 [M2

C12H20O3]
1 (12), 252 [M2C6H2O4]

1 (46), 106 (100). HR-EIMS m/z:
516.3056 (M1, Calcd for C30H44O7: 516.3088). 1H- and 13C-NMR data: see
Tables 1 and 2. In the HMBC spectrum, the following correlations were ob-
served: C-1/H-2,19; C-2/H-1; C-3/H-1,2,5,28,29; C-4/H-5,6,28,29; C-5/H-
6,19,28,29; C-6/H-5,7; C-7/H-5,6; C-8/H-6,30; C-9/H-1,5,19; C-10/H-
2,5,6,19; C-11/H-12; C-12/H-18; C-13/H-12,18,30; C-4/H-7,12,16,18; C-
15/H-30; C-16/H-20; C-17/H-15,18,21; C-18/H-12,30; C-19/H-1,5,6; C-
20/H-21,22; C-21/H-20,22; C-22/H-21,23; C-23/H-20,27; C-24/H-22,27; C-
25/H-23,27; C-26/H-24,27; C-27/H-24; C-28/H-5,29; C-29/H-6,28; C-30/H-
12.

(23S)-3bb ,7bb ,23-Trihydroxy-11,15-dioxolanosta-8,24(E)-diene-26-oic
Acid (3, Ganoderic Acid ee) Colorless needles (MeOH–H2O), mp 249—
251 °C. [a]D 1153.3° (c50.1, EtOH). IR nmax cm21: 3553, 3335 (OH),
1714, 1695, 1658 (C5O). UV lmax nm (log e): 212 (4.13), 253 (4.03). Posi-
tive-mode FABMS m/z: 517 [M1H]1, 539 [M1Na]1. HR positive-mode
FABMS m/z: 517.3142 ([M1H]1, Calcd for C30H45O7: 517.3165). 1H- and
13C-NMR data: see Tables 1 and 2. In the HMBC spectrum, the following
correlations were observed: C-1/H-19; C-2/H-1; C-3/H-1,28,29; C-4/H-
5,6,28,29; C-5/H-6,19,28,29; C-6/H-5,7; C-7/H-5,6; C-8/H-6,7,30; C-9/H-
5,7,12,19; C-10/H-1,5,6,19; C-11/H-12; C-12/H-18; C-13/H-12,16,17,18,30;
C-14/H-12,18,30; C-15/H-17,30; C-16/H-18,30; C-17/H-16,18,21; C-18/H-
12,17; C-19/H-1,5; C-20/H-16,17,21,23; C-21/H-17,20,22; C-22/H-
20,21,23; C-23/H-20,27; C-24/H-27; C-25/H-23,24,27; C-26/H-24,27; C-
27/H-24; C-28/H-3,29; C-29/H-3,5,28.

(R)-(1)-MTPA Ester of 3 (3a) (R)-(1)-MTPA chloride (15 mg,
59 mmol) in pyridine (0.2 ml) was added to a solution of 3 (2.0 mg,
3.9 mmol) in CCl4 (0.2 ml). After stirring at room temperature for 6 h,
workup as mentioned above gave a 3,23-di-(R)-(1)-MTPA ester (3a, 1.8 mg)
as a colorless oil. 1H-NMR (CDCl3): d 1.11 (1H, m, Ha-1), 2.91 (1H, dt,
J514.0, 3.6 Hz, Hb-1), 1.82 (2H, m, H-2), 4.71 (1H, dd, J511.6, 5.1 Hz, H-
3), 0.98 (1H, m, H-5), 2.16 (1H, m, Ha-6), 1.61 (1H, m, Hb-6), 4.79 (1H, t,
J59.0 Hz, H-7), 2.76 (1H, d, J516.8 Hz, Ha-12), 2.68 (1H, d, J516.8 Hz,
Hb-12), 2.75, 2.05 (each 1H, m, H-16), 1.94 (1H, m, H-17), 0.86 (3H, s, H-
18), 1.24 (3H, s, H-19), 1.50 (1H, m, H-20), 1.06 (3H, d, J56.5 Hz, H-21),
1.70 (2H, m, H-22), 5.78 (1H, m, H-23), 6.49 (1H, dd, J59.2, 1.2 Hz, H-24),
2.00 (3H, d, J51.2 Hz, H-27), 0.93 (3H, s, H-28), 0.85 (3H, s, H-29), 1.26
(3H, s, H-30), 3.49, 3.56 (each 3H, s, MTPA-OCH3).

(S)-(2)-MTPA Ester of 3 (3b) (S)-(2)-MTPA chloride (15 mg) in pyri-
dine (0.2 ml) was added to a solution of 3 (2 mg) in CCl4 (0.2 ml). Workup
as mentioned above gave a 3,23-di-(S)-(2)-MTPA ester (3b, 1.0 mg) as a
colorless oil. 1H-NMR (CDCl3): d 1.07 (1H, m, Ha-1), 2.87 (1H, dt, J513.7,
3.7 Hz, Hb-1), 1.75 (2H, m, H-2), 4.69 (1H, dd, J511.8, 4.4 Hz, H-3), 0.99
(1H, m, H-5), 2.17 (1H, ddd, J512.7, 7.9, 1.1 Hz, Ha-6), 1.65 (1H, m, Hb-
6), 4.79 (1H, t, J58.9 Hz, H-7), 2.73 (1H, d, J516.6 Hz, Ha-12), 2.67 (1H,
d, J516.6 Hz, Hb-12), 2.70, 2.04 (each 1H, m, H-16), 1.92 (1H, m, H-17),
0.86 (3H, s, H-18), 1.21 (3H, s, H-19), 1.46 (1H, m, H-20), 0.96 (3H, d,
J56.8 Hz, H-21), 1.61 (2H, m, H-22), 5.79 (1H, m, H-23), 6.60 (1H, dd,
J59.7, 1.2 Hz, H-24), 2.03 (3H, d, J51.2 Hz, H-27), 0.95 (3H, s, H-28),
0.87 (3H, s, H-29), 1.26 (3H, s, H-30), 3.52, 3.54 (each 3H, s, MTPA-
OCH3).

(23S)-3bb ,23-Dihydroxy-7,11,15-trioxolanosta-8,24(E)-diene-26-oic
Acid (4, Ganoderic Acid zz) Colorless needles (MeOH–H2O), mp 143—
145 °C. [a]D 1213.3° (c50.015, EtOH). IR nmax cm21: 3421 (OH), 1747,
1698, 1681, 1654 (C5O). UV lmax nm (log e): 210 (4.13), 257 (3.81). Posi-
tive-mode FABMS m/z: 515 [M1H]1, 537 [M1Na]1. HR positive-mode
FABMS m/z: 515.3044 ([M1H]1, Calcd for C30H43O7: 515.3009). 1H- and
13C-NMR data: see Tables 1 and 2. In the HMBC spectrum, the following
correlations were observed: C-1/H-19; C-3/H-28,29; C-4/H-19,28,29; C-
5/H-6,19,28,29; C-7/H-6; C-8/H-30; C-9/H-19; C-10/H-19; C-11/H-12; C-
12/H-18; C-13/H-18,30; C-14/H-12,18,30; C-15/H-30; C-16/H-18,20; C-
17/H-12,16,18; C-18/H-12,16,30; C-19/H-1,5; C-20/H-21; C-22/H-21; C-
23/H-20; C24/H-22,27; C25/H-27; C26/H-24,27; C-27/H-24; C28/H-29;
C29/H-29.

(23S)-3bb ,7bb ,12bb ,23-Tetrahydroxy-11,15-dioxolanosta-8,24(E)-diene-
26-oic Acid (5, Ganoderic Acid hh) Yellow needles (MeOH–H2O), mp
212—214 °C. [a]D 1128.0° (c50.1, EtOH). IR nmax cm21: 3405 (OH),
1725, 1697, 1673 (C5O). UV lmax nm (log e): 209 (4.10), 257 (3.80). Posi-
tive-mode FABMS m/z: 533 [M1H]1, 555 [M1Na]1. HR positive-mode
FABMS m/z: 555.2791 ([M1Na]1, Calcd for C30H44O8Na: 555.2812). 1H-
and 13C-NMR data: see Tables 1 and 2. In the HMBC spectrum, the follow-
ing correlations were observed: C-1/H-2,19; C-2/H-1; C-3/H-1,2,28,29; C-
4/H-2,3,6,28,29; C-5/H-6,19,28,29; C-6/H-7; C-7/H-5,6; C-8/H-6,7,30; C-
9/H-5,7,19; C-10/H-1,19,28,29; C-11/H-12; C-12/H-18; C-13/H-12,16,17,

18,30; C-14/H-7,12,18,30; C-15/H-17; C-16/H-17,20; C-17/H-16,18,21; C-
18/H-17; C-19/H-1,5; C-20/H-16,17,23; C-21/H-17; C-22/H-21; C-23/H-20;
C-24/H-22,27; C-25/H-23,27; C-26/H-24; C-27/H-24; C-28/H-3,29; C-
29/H-3,6,28.

(R)-(1)-MTPA Ester of 5 (5a) (R)-(1)-MTPA chloride (15 mg,
59 mmol) in pyridine (0.2 ml) was added to a solution of 5 (2.0 mg,
3.8 mmol) in CCl4 (0.2 ml). The mixture was stirred at room temperature for
6 h and worked up as described above to give a 3,23-di-(R)-(1)-MTPA ester
(5a, 1.2 mg) as a colorless  oil. 1H-NMR (CDCl3): d 1.01 (1H, m, Ha-1),
2.68 (1H, dt, J513.8, 3.7 Hz, Hb-1), 1.83 (2H, m, H-2), 4.70 (1H, dd,
J511.0, 5.2 Hz, H-3), 0.95 (1H, m, H-5), 2.20 (1H, m, Ha-6), 1.67 (1H, m,
Hb-6), 4.77 (1H, t, J510.9 Hz, H-7), 4.33 (1H, s, H-12), 2.62, 2.13 (each
1H, m, H-16), 2.51 (1H, m, H-17), 0.72 (3H, s, H-18), 1.25 (3H, s, H-19),
2.04 (1H, m, H-20), 1.19 (3H, d, J56.8 Hz, H-21), 1.85 (2H, m, H-22), 5.79
(1H, m, H-23), 6.48 (1H, dd, J59.2, 1.5 Hz, H-24), 2.01 (3H, d, J51.5 Hz,
H-27), 0.87 (3H, s, H-28), 0.86 (3H, s, H-29), 1.32 (3H, s, H-30), 3.52, 3.55
(each 3H, s, MTPA-OCH3).

(S)-(2)-MTPA ester of 5 (5b) (S)-(2)-MTPA chloride (15 mg) and
pyridine (0.2 ml) were added to a solution of 5 (2 mg) in CCl4 (0.2 ml).
Workup as mentioned above gave a 3,23-di-(S)-(2)-MTPA ester (5b,
0.8 mg) as a colorless oil. 1H-NMR (CDCl3): d 1.00 (1H, m, Ha-1), 2.65
(1H, dt, J514.0, 2.9 Hz, Hb-1), 1.71 (2H, m, H-2), 4.67 (1H, dd, J59.4,
4.4 Hz, H-3), 0.96 (1H, m, H-5), 2.23 (1H, m, Ha-6), 1.68 (1H, m, Hb-6),
4.77 (1H, dd, J58.3, 4.1 Hz, H-7), 4.28 (1H, s, H-12), 2.58, 2.12 (each 1H,
m, H-16), 2.45 (1H, m, H-17), 0.69 (3H, s, H-18), 1.24 (3H, s, H-19), 1.99
(1H, m, H-20), 1.11 (3H, d, J56.8 Hz, H-21), 1.79 (2H, m, H-22), 5.81 (1H,
m, H-23), 6.59 (1H, dd, J58.6, 1.5 Hz, H-24), 2.03 (3H, d, J51.5 Hz, H-27),
0.94 (3H, s, H-28), 0.88 (3H, s, H-29), 1.30 (3H, s, H-30), 3.51, 3.53 (each
3H, s, MTPA-OCH3).

(23S)-3bb ,12bb ,23-Trihydroxy-7,11,15-trioxolanosta-8,24(E)-diene-26-
oic Acid (6, Ganoderic Acid qq) Yellow needles (MeOH–H2O), mp 131—
133 °C. [a]D 171.3° (c50.1, EtOH). IR nmax cm21: 3404 (OH), 1747, 1685,
1653 (C5O). UV lmax nm (log e): 212 (4.08), 251 (3.75). Positive-mode
FABMS m/z: 531 [M1H]1, 553 [M1Na]1. HR positive-mode FABMS m/z:
531.2933 ([M1Na]1, Calcd for C30H43O8: 531.2958). 1H- and 13C-NMR
data: see Tables 1 and 2. In the HMBC spectrum, the following correlations
were observed: C-1/H-19; C-3/H-1,28,29; C-4/H-6,19; C-5/H-6,19,28,29; C-
6/H-5; C-7/H-6; C-8/H-6,30; C-9/H-5,19; C-10/H-1,19; C-11/H-12; C-12/H-
18; C-13/H-12,16; C-14/H-12,18,30; C-15/H-16,17,30; C-17/H-16,18,21; C-
19/H-5; C-20/H-21,22; C-21/H-23; C-22/H21; C-23/H-20,27; C-24/H-
22,27; C-25/H-23,27; C-26/H-24,27; C-27/H-24; C-28/H-3,29; C-29/H-
3,28.

(R)-(1)-MTPA Ester of 7 (7a) (R)-(1)-MTPA chloride (10 mg,
40 mmol) in pyridine (0.1 ml) was added to a solution of 7 (1.0 mg, 2 mmol)
in CCl4 (0.1 ml). After stirring at room temperature for 20 h, workup as men-
tioned above gave a 15,23-di-(R)-(1)-MTPA ester (7a, 0.7 mg) as a colorless
oil. 1H-NMR (CDCl3): d 1.46 (1H, m, Ha-1), 2.96 (1H, ddd, J515.1, 9.0,
6.0 Hz, Hb-1), 2.45 (2H, m, H-2), 2.68 (1H, d, J517.2 Hz, Ha-12), 2.43 (1H,
d, J517.2 Hz, Hb-12), 5.20 (1H, dd, J59.7, 5.5 Hz, H-15), 1.81 (2H, m, H-
16), 1.91 (1H, m, H-17), 0.87 (3H, s, H-18), 1.05 (3H, s, H-19), 1.36 (1H,
m, H-20), 0.95 (3H, d, J56.3 Hz, H-21), 1.62, 1.75 (each 1H, m, H-22), 5.77
(1H, m, H-23), 6.50 (1H, dd, J59.4, 1.5 Hz, H-24), 2.01 (3H, d, J51.5 Hz,
H-27), 1.06 (3H, s, H-28), 1.05 (3H, s, H-29), 1.13 (3H, s, H-30), 3.51, 3.63
(each 3H, s, MTPA-OCH3).

(S)-(2)-MTPA Ester of 7 (7b) (S)-(2)-MTPA chloride (10 mg) in pyri-
dine (0.1 ml) were added to a solution of 7 (1 mg) in CCl4 (0.1 ml). After
workup as usual, a 15,23-di-(S)-(2)-MTPA ester (7b, 0.6 mg) was obtained
as a colorless oil. 1H-NMR (CDCl3): d 1.46 (1H, m, Ha-1), 2.95 (1H, ddd,
J518.0, 7.7, 5.7 Hz, Hb-1), 2.45 (2H, m, H-2), 2.59 (1H, d, J517.3 Hz, Ha-
12), 2.38 (1H, d, J517.3 Hz, Hb-12), 5.21 (1H, dd, J59.4, 5.6 Hz, H-15),
1.77 (2H, m, H-16), 1.83 (1H, m, H-17), 0.85 (3H, s, H-18), 1.05 (3H, s, H-
19), 1.29 (1H, m, H-20), 0.84 (3H, d, J55.8 Hz, H-21), 1.53, 1.66 (each 1H,
m, H-22), 5.77 (1H, m, H-23), 6.61 (1H, dd, J58.0, 1.5 Hz, H-24), 2.02 (3H,
d, J51.5 Hz, H-27), 1.08 (3H, s, H-28), 1.07 (3H, s, H-29), 1.09 (3H, s, H-
30), 3.45, 3.54 (each 3H, s, MTPA-OCH3).

Cytotoxicity Assay The in vitro Meth-A tumor cell assay was carried
out according to the procedure by Geran et al.36) and LLC cells, by a sul-
forhodamin B (SRB) method37) as described previously.38)
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